Adult Cardiac Expression of the Activating Transcription Factor 3, ATF3, Promotes Ventricular Hypertrophy
نویسندگان
چکیده
Cardiac hypertrophy is an adaptive response to various mechanophysical and pathophysiological stresses. However, when chronic stress is sustained, the beneficial response turns into a maladaptive process that eventually leads to heart failure. Although major advances in the treatment of patients have reduced mortality, there is a dire need for novel treatments for cardiac hypertrophy. Accordingly, considerable efforts are being directed towards developing mice models and understanding the processes that lead to cardiac hypertrophy. A case in point is ATF3, an immediate early transcription factor whose expression is induced in various cardiac stress models but has been reported to have conflicting functional significance in hypertrophy. To address this issue, we generated a transgenic mouse line with tetracycline-regulated ATF3 cardiac expression. These mice allowed us to study the consequence of ATF3 expression in the embryo or during the adult period, thus distinguishing the effect of ATF3 on development versus pathogenesis of cardiac dysfunction. Importantly, ATF3 expression in adult mice resulted in rapid ventricles hypertrophy, heart dysfunction, and fibrosis. When combined with a phenylephrine-infusion pressure overload model, the ATF3 expressing mice displayed a severe outcome and heart dysfunction. In a complementary approach, ATF3 KO mice displayed a lower level of heart hypertrophy in the same pressure overload model. In summary, ectopic expression of ATF3 is sufficient to promote cardiac hypertrophy and exacerbates the deleterious effect of chronic pressure overload; conversely, ATF3 deletion protects the heart. Therefore, ATF3 may serve as an important drug target to reduce the detrimental consequences of heart hypertrophy.
منابع مشابه
Expression and Clinical Significance of Activating Transcription Factor 3 in Human Breast Cancer
Objective(s): Breast cancer is the most common type of cancer among women worldwide. This study investigated the expression and clinical significance of activating transcription factor 3 (ATF3) in human breast cancer and its relationship with the clinical outcome of breast cancer. Materials and Methods : ATF3 expressions were detected in 114 primary breast cancer tissues and ...
متن کاملActivating Transcription Factor 3 Deficiency Promotes Cardiac Hypertrophy, Dysfunction, and Fibrosis Induced by Pressure Overload
Activating transcription factor 3 (ATF3), which is encoded by an adaptive-response gene induced by various stimuli, plays an important role in the cardiovascular system. However, the effect of ATF3 on cardiac hypertrophy induced by a pathological stimulus has not been determined. Here, we investigated the effects of ATF3 deficiency on cardiac hypertrophy using in vitro and in vivo models. Aorti...
متن کاملFeedback regulation by Atf3 in the endothelin-1-responsive transcriptome of cardiomyocytes: Egr1 is a principal Atf3 target
Endothelin-1 promotes cardiomyocyte hypertrophy by inducing changes in gene expression. Immediate early genes including Atf3 (activating transcription factor 3), Egr1 (early growth response 1) and Ptgs2 (prostaglandin-endoperoxide synthase 2) are rapidly and transiently up-regulated by endothelin-1 in cardiomyocytes. Atf3 regulates the expression of downstream genes and is implicated in negativ...
متن کاملThe Effect of Different Exercise Intensities on T-Box Transcription Factor 5 Gene Expression and Hypertrophy in the Heart Muscle of Male Rats
Background: Exercise is one of the methods affecting cardiovascular adaptation, but its cellular and molecular pathways and mechanisms are unknown. T-Box Transcription Factor 5 (TBX5) gene seems to be one of the factors involved in regulating cardiac hypertrophy. Objective: The aim of this study was to investigate the effect of an 8-week exercise program with different intensities on the expre...
متن کاملActivating transcription factor 3 protects against pressure-overload heart failure via the autophagy molecule Beclin-1 pathway.
Activating transcription factor 3 (ATF3), a cAMP response element-binding protein/ATF family transcription factors member, has been implicated in the cardiovascular and inflammatory system and is rapidly induced by ischemic-reperfusion injuries. We performed transverse aortic banding (TAB) experiments using ATF3 gene-deleted mice (ATF3(-/-)) and wild-type (WT) mice to determine what effect it m...
متن کامل